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Solutions have been obtained for the technical stability over finite and infinite time 
intervals and for the asymptotic technical stability [1-18] in the spatial motion of a pipe- 
line having a rectilinear axis and with free or hinged attachment, which bears a liquid 
flowing at a set pressure [19-22]. Throughout its length, the pipeline has a variable cross 
section [21]. The liquid is taken as ideal. A nonlinear boundary-value treatment is in- 
volved, which involves three partial differential equations [23-25] with variable coeffi- 
cients, which are derived from applying the theory of planar sections for long cylindrical 
shells (hollow rods) on the assumption that the transverse motions have little effect on the 
longitudinal ones. Sufficient conditions are given for the technical stability in terms 
of a given vector measure, which are expressed in terms of parameters containing the given 
pressure and speed in the liquid at the inlet. The dynamic behavior over an arbitrarily 
long but finite time interval is dependent on a small parameter, which in turn is dependent 
on the major system parameters including the internal pressure in the liquid and the speed at 
the inlet. Conditions are defined under which there is stability loss for a fixed pressure 
within the liquid. The corresponding critical inlet velocity is expressed in terms of the 
basic parameters. Lyapunov's direct method [20, 25-27] is applied with a comparison method 
[6-18, 28]. 

Pipeline stability is important and is dealt with in many papers [19-22, 27]. The 
problem is extremely complicated, so simplifying assumptions are usually made, and the sta- 
bility is usually examined by means of various direct integration methods. However, there 
has been no study on the technical stability. The sufficient stability conditions in the 
Lyapunov sense for such systems have been derived [20, 27]. The present results differ 
substantially from the stability features in [20, 27] not only in that the conditions for 
technical stability are examined in a three-dimensional nonlinear formulation and for any 
finite present time interval but also in that the constraints on the initial stages are 
independent of the majoration conditions for the subsequent states during the given time 
interval. This approach can be used to research technical stability in more complicated 
pipeline problems without resort to simplifying assumptions, e.g., for curves pipelines with 
various forms of boundary attachment, or when there are parametric loads or turbulence, etc. 
It is not essential to meet the conditions for negative definiteness in the total derivative 
of the Lyapunov function by virtue of the initial boundary-value treatment in this approach, 
in contrast to stability in the Lyapunov sense, which extends the parameter range that can 
be used. The comparison method provides a fuller allowance for the factors that influence the 
stability. 

i: Nonlinear Boundary-Value Treatment for the Motion of a Pipeline Containing a Flowing 
Liquid. We consider a long flexible pipe containing a flowing ideal liquid under the condi- 
tions stated below. We assume that the pipeline constitutes a homogeneous isotropic body and 
as a shell is deformed geometrically nonlinearly [24]. The symbols are: m1(s) the mass of 
unit length, which is dependent on the scalar coordinate s of the point on the axis line; 
m2(s) the mass of liquid per unit length; Pl and P2 the densities of the tube material and 
liquid; F1(s) , F2(s) the area of any cross section of the tube and the area of the hole in 
it; s tube length; h average thickness; P pressure in liquid; and f a vector characterizing 
the distribution of the interaction between the pipeline and the liquid, which for a tube 
whose area in the lumen varies with the coordinate sis [21] | =--P(aF,#)/8@e, ~-7~ez~-~e3; 

with el, e~, and e8 unit vectors for the current time-dependent configuration under small de- 
formations, with e~, and re8 directed along the principal axes of the cross section; and el, e~, 
% vectors for the relative velocity of the liquid, where w0Fz0 = ~F~(s), ~0w0----m~w; for 
small deformations and finite angles of rotation, the basic vectors 71, 72 and q for a 
current configuration are taken as mutually orthogonal and directed along the principal axes 
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of inertia in the pipeline for any point on the axial line; q the vector for the external 
distributed forces on the tube; and T~ and X2 are the vectors for the distributed forces 
caused by the force fields correspondingly for the tube and liquid; Qo) the internal-force 

vector; Q(~) = Q~)e I + Q~)e~ + Q~)ea; with Q~) the axial force and Q~), Q~*) the shearing forces; 
while M is the vector for the internal moments: M=MIeI+M#2+M~s; with M I the torque 
and M2 and M3 the bending moments; v the vector for the absolute velocity of the center of 
gravity of an element ds in the pipeline; v Poisson's ratio; E Young's modulus; and el0, e20, 
and e~0 an orthogonal system of unit vectors for the unperturbed equilibrium state, with e,0 
along the axial line in the sense of the liquid motion, while el0 (i = I, 2, 3) are inde- 
pendent of s, which corresponds to considering the unperturbed pipeline with rectilinear axis; 
and D = (~,, V~, V3) the distributed moment acting on the pipeline, which is stationary with re- 
spect to s, and we recall that the flow of an ideal incompressible liquid does not produce 
moments acting on the pipeline. 

We write the nonlinear scalar equations for the motion of the pipeline containing the 
liquid in terms [21] of the corresponding vector equation for the forces and that for the 
equilibrium for the moments in the system: 

[ m , ( s ) + m 2 ( s ) ] O ~ t  +m~(s) (Ov 0w) _ OQ -~s w + ~ f - - ~ - +  q + ~, 
(1.1) 

Q = Q(1) = [pF2 (s) + m* (s)w 2 (s)] e , ,  

= ~, + ?~, ~ = (?(*), ~*) ,~(a ) ;  

aM~as = Q X e  i + ~.. 
( 1 . 2 )  

We project (i.i) and (1.2) on the unit vectors for the e~0 basis for the unperturbed state 
with a linear approximation for the displacement vector on a standard approach [24]. As we 
envisage the pipeline as long, we assume that longitudinal motions will influence the bend- 
ing motion substantially but not vice versa. Then after suitable transformations via the 
[24] relations, we get a nonlinear system of equations of motion in dimensionless terms 
written in terms of the displacements: 

02Ul 02Ul ~2U 1 ~ 

at ~ + 2wiPotos Os 4 Os 2 + i ~'s\O# Os] + 

A(~) Of 1 (s) Ou i au I Ou i ( . . . .  ~ o~ o~ +~-~q~ +?~) +qi+'?~' i=2,3 .  (1.3) 

The pipeline is considered subject to boundary conditions corresponding to free mounting 
or hinged attachment at the ends [22, 23]: 

and the initial conditions 

ui(t, O) -= us(t, 1) = O, ] = 1, 2, 3, 

~ (t, O)= 02ur 
as 2 T 2  (t, t ) =  O, ] =  1, 2 ,3 ,  

uj (t, s)[t=t ~ = kj (s), ] = t ,  2, 3, 

Ouj(t,ot s) t=%--' g~(s), ] = t ,  2, 3. 

(1.4) 

(1.5) 

H e r e  p = {m2o/2(s)/[m,dl(S) + m.,.o/2(s)]}1/2; P l  = I)F20/2(g)/EFlo/l($)~); P_2 ----- PF20/2(s)I/EI3(8) ~); P3 = PF20/2(8) 12l/ 

EI~(s)6; q~ = q~12/EFlo/l(S)h6; ~ = q2l~/EIj(s) h6; q~ = qal'/EI2(s)h6; -q2 = qt!3/EI3(s)5_; q3 = qll3/EI*(s)6; u f f  
a](*) 12/EF~o/l(S)hS; ~ =- "~(2)14/El~(s)h6; ?3 = Y(a)IVEf~(s)hS; ?-2 : =  ?(1) 13/Ef3(s)6; Y3 = ?~ wl = 
wo(m~o/E/ds)fds)6)~/h w2 = wol(m20/E/2(s)I3(s)5)i/h ~v3 = wol(m20/E/~is)I4s)5)W~; A(21)=Flo/,(Si hl/I3(s); A(2 ~) F,olh/ 

[a(s); A(3 ~) = Flo/~(s)lh/I2(s); A(32) = E~olh/I2(s); 5 - -  ( i - - ~ ) [ ( i + ~ ) ( i - - 2 ~ ) ] - * ;  w i t h  I 2 ( s )  and T ~ ( s )  
the corresponding moments of inertia for the tube cross section. The areas of intersection 

of the tube and the lumen in it are f l ( s  ) ----flofl(s), F2(s )=  f2J2(s) , and m~(s)= pif~(s)- - - -piFiof i (s)= 
mlo]~(s), i = l ,  2. A z e r o  i n  t h e  s u b s c r i p t s  r e l a t e s  t o  a q u a n t i t y  a t  t h e  i n l e t  t o  t h e  t u b e .  As 
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fz(s), f2(s), 12(s) , 13(S ) are functions of s, (1.3) have coefficients dependent on s, which 
causes additional difficulties in examining the initial process. 

We assume that the given kj(s), gj(s) in (1.5), which satisfy the necessary conditions 
for matching at the end of the pipeline, will ensure that (1.3)-(1.5) has a unique solution 
in the class of continuous functions of t and s having continuous derivatives with respect 
to t and s of the necessary orders. 

2. Sufficient Conditions for Technical Stability. The generative system [15, 16] for 
(1.3) is taken as a nonlinear homogeneous one (i.e., for qj = 0, ~(0) = 0, j = I, 2, 3) cor- 
responding to (1.3), which we consider with boundary conditions (1.4) and (1.5). The gen- 
erative system has the trivial solution uj(t, s) -0 (j = i, 2, 3), which we take as corre- 
sponding to the unperturbed equilibrium state. We examine the technical stability in the 
dynamic behavior with the perturbations described by (1.3)-(1.5), for which we use Lyapunov's 
second method with the comparison method. We take the vector functional 

V[ul, u2, u3, t] = {V~[uj, t], i = t, 2, 3}, 
t 

_ ? ~  
0 

1 

Vi[ui, t l = ; d s  --(Pi-'FWi)~'~s + k o t /  j '  i = 2 , 3 .  
0 

We w r i t e  t he  t o t a l  d e r i v a t i v e  fo r  (2 .1 )  by v i r t u e  of  ( 1 . 3 ) - ( 1 . 5 )  a f t e r  s u i t a b l e  s i m p l i f i c a -  
t i o n s  as 

l ~ / / ~  aUl \  ~] 

d ~ = 2  ds + I t ( s ) - '  as ] >~ ot # s  +'gs  - -  " + ' q , + ? ~ ] J ,  
e 

t (2 .2 )  
av, [u,; t] = j' i r o ,(o 4 1  ) O2ul A(.~ ) 0,1 (s) Ou 1 

,as 2 ( 3 ~ + ~ )  + - - + - ,  - - s  + 
O 

u~' ip , = + o 7  2 ,3 .  

We consider the vector measure 
1 

9(u) {p,(u,),p,(u,),pa(%) }, p , (ua )=  sup(u,) 2 + .  ds + (-'~i-) J' 
0 

p~(u O'=sup, (uO 2+sup, \-Y~s/ + ds[\as ~/ +C-~/ J' 
0 

/ = 2 , 3 .  

(2 .3 )  

We use the inequalities [20] 
l 1 

) s u p  - -  , ds ~ >la ~ ds\~s] ~,Os ~] s ~asJ 
O 0 0 O 

1 y lOuj ~2 
ds [-~] ) sup ui, ] --~ t, 2, 3, 

8 
O 

to find a lower bound for Vj[uj, t] (j = i, 2, 3) along the solution to (1.3)-(1.5): 

1 

" 1 2V~[u'(t;s) ' t]>2Jds[['~s) --(P'- 4-w~)k as/J + 
0 

1 1 
/Oul'~2 . 

O 0 s 

OU 1 2 

0 
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Then 

i 1~ .i i " " 
' ~o~,2 (o~ 2_ 

3Vi[ui(t ,s), t]>~a z d s [ -~s ) - - ( p~+ w ~)  dsl-~s ) + 2  d s \ o s , ]  
0 0 0 

1 1 

- - ~ ( p ~ + w ~ ) J d s [ - ~ )  + [ l - - ( p , + w ~ ) l . / ' d s k o t /  > [i (p~+w])lp,(u~(t,s)), ~ = 2 , 3 ,  
0 0 

= sup  ( ? 3 ,  w1 = = 2, 3. 
8 ~ 

Vl[ul(t, s), t] ~> 2 -1[1 --(p~ + wl 2) lpdudt,s)), 
Vi[ui(t, s), t] >7 3-111 - -  (p~ + w~')lp~(u~(t, s)), i = 2, 3. 

( 2 . 4 )  

(2.5) 

Then the functionals Vj[uj(t, s), t] (j = i, 2, 3) are positive-definite with respect to 
the measure p(u) if 0 J pj + wj < i, j = i, 2, 3. We examine the case 

O < p i + w ~ 2 < l ,  ] =i, 25 3. (2.6) 

Then ~j = 1 - (pj + w]) (j = I, 2, 3) have the meaning of small positive parameters: ~j~ (0, i] 
(j = i, 2, 3), with which we specify in advance an arbitrarily large but finite time inter- 
val T within which we consider the dynamic behavior of (1.3)-(1.5), namely we put T = [to, 
L~-l], where t0~0, and L is a specified and arbitrarily large constant, which in general is 
dependent on the parameters characterizing the pipeline reliability [24, 27]; we take ~-i = 

min{~T1,~1,~11. We use the monotone feature of the product for any natural quantities to 
get for (2.5) that 

V~ [u~ (t, s), t] 1> ~x p~ (u 1 (t, s)), 
(~1 + t) 2 2 (~1 + t) 2 

( 2 . 7 )  
------!--t(~i + t) 2 Vi [u~ (t, s), t] 1> 3 ( ~ +  t)2 P{ (ui (t, s)), i = 2, 3. 

We denote the right-hand sides in (2.2) along the solution to the initial (1.3)-(1.5) 
system correspondingly by Nj(t, s), j = I, 2, 3. We use (2.2), (2.5), (2.7) to form the 
functions 

- 

-- -- ~i 9~(ui(t,s)), i 2 , 3 . ( 2 . 8 )  r (t, Pl, wl) ---- N1 (t, s) 2 [~t t)2 Pl (ul (t, s)), r (t, Pi, wi) ---- N~ (t, s)-  3 (~t i -+- t) 2 

The following inequalities apply: 

(~1 (t ,  Pl ,  Wl) ~ N 1 (t, s) ~tl 2 suP  l ul  (t, s)12, 
2 0'1 + t) 

~ (t, p~, wi)< Af~ (t, s) bt--~ sup I ui (t, s)]2, i = 2, 3, 

(2 .9 )  

Let ~j(t, ~j, ~j) be known bounded continuous functions of the variable t, which are depen- 
dent on ~j, @j as parameters and which majorize the right sides of (2.9). In particular, along 
the solutions to (1.3)-(1.5) one can put 

@j (t, pj ,  ~ j )  = sup l N j  (t,s) I - -  ~_______i___J x supl uj (t, s)I, ] = t ,  ~ = 2; ] = 2, 3, ~ = 3. 
s ~ (tt/-~ t) 2 s 

Along t h e  s o l u t i o n  t o  t h e  i n i t i a l  ( 1 . 3 ) - ( 1 . 5 )  we g e t  

dV i [uj (t, s), t] t V i [u s (t, s), t] + �9 i (t, pj, wi), j = t ,  2, 3. dt <~ (~i + t)-----~ 

I n e q u a l i t i e s  ( 2 . 1 0 )  e n a b l e  one to  c o n s i d e r  a s y s t e m  of  t h r e e  l i n e a r  inhomogeneous  o r d i n a r y  
d i f f e r e n t i a l  e q u a t i o n s  of  f a i r l y  s i m p l e  form [6 -18 ,  28 ] :  

duj i (Di( t , -  ~vi), ] = 1,2,~3 (2 11) 
dt ("i + t)2 gJ + Pi, 

subject to the initial conditions 

g~(to) = y o >~ V1 [uj(to), t0], ] = t, 2, 3. 

( 2 . 1 0 )  

( 2 . 1 2 )  
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The homogeneous system corresponding to (2.11) splits up into three independent scalar first- 
order differential equations, so each equation in (2.11) is integrated independently. Clearly, 
in (2.12) we have 

I 

V z [u z.(to), to] = J',- ds f[okzL~, "--~--s ](s)"~2[1 --'(P1 + ~'~)] + gz 2 (s) 1, 
o ( 2 . 1 3 )  

1 

i =  2,3 
0 

on t h e  a s s u m p t i o n  t h a t  k j ( s ) ,  g j ( s )  ( j  = 1, 2, 3) have  t h e  n e c e s s a r y  r e g u l a r i t y  w i t h  r e s p e c t  
t o  s '~: [0, i ] .  The f e a t u r e s  of  ( 2 . 1 1 )  g i v e  us a s o l u t i o n  c o n t i n u o u s  in  t h e  i n t e r v a l  T: 

t 

yj (t, = [ -  t) ] + c j  (t, + 
t o 

y~ exp [i/(~j § to) ] exp [-- l/(~j § t)], ] = i,  2, 3, ( 2 . 1 4 )  

which i s  d e p e n d e n t  on t h e  p a r a m e t e r s  ~ j ,  ~ j .  A s t a n d a r d  theorem on d i f f e r e n t i a l  i n e q u a l i -  
t i e s  [28] g i v e s  us  f o r  ~ T a long  t h e  s o l u t i o n  t o  ( 1 . 3 ) - ( 1 . 5 )  a s y s t e m  o f  bounds 

Vj[ui(t  , s), t] ~ Y/(t, Pi, w/), ] = 1 ,  2, 3. ( 2 . 1 5 )  

As t h e  y j ( t ,  ~ j ,  Oj)  ( j  = 1, 2, 3) a r e  c o n t i n u o u s  in  T, ( 2 . 1 5 ) g i v e s  t h e  t e c h n i c a l  s t a b i l -  
i t y  ove r  a f i n i t e  t ime  i n t e r v a l  w i t h  r e s p e c t  t o  t h e  g i v e n  measure  p ( u ) .  

t 

I f  t h e  C j ( t ,  ~ j ,  ~ j )  a r e  such  t h a t  ~ ' exp [ l / (~§  •162 pj, w~)dz (] ~-1,  2, 3 ) ' a r e  c o n t i n u o u s  
0 

bounded f u n c t i o n s  f o r  any t ime i n t e r v a l  T _~ T1------[to, + co) and i n c r e a s e  in  each  T ___ T~ n o t  more 
r a p i d l y  than  c o r r e s p o n d i n g l y  e x p [ 1 / ( ~ j  + t ) ] ,  ( 2 . 1 4 )  shows t h a t  ( 1 . 3 ) - ( 1 . 5 )  i s  t e c h n i c a l l y  
s t a b l e  w i t h  r e s p e c t  t o  t h e  p (u)  measure  o v e r  an i n f i n i t e  t ime  i n t e r v a l ,  i . e . ,  in  t h a t  c a s e  
one can s t a t e  p r e s e t  c o n t i n u o u s  bounded f u n c t i o n s  B j ( t )  d e f i n e d  f o r  each  T ~ T~ and such  t h a t  
t h e  bounds a r e  

t 

.f d~exp [.t/(~ § T)] qbj (~ ,~ ,  ~,j) ~ B  i (t)exp [ t / (~  + t)], ] = i, 2, 3 ( 2 . 1 6 )  
t o 

subject to the inequalities 

Bj(t) -~ yy~ [i/(9] -~ t) ]exp [-- l / (~j  Jr t) ] ~  0, 

] = 1 , 2 , 3 .  

Also, if 

t 

exp [I/(~j § t)] ~ ~ exp [i/(pj § T)] ~ j  (T, pj, wj) dT, 
t 0 

j = 1 , 2 , 3  (2.17) 

for all T ~ TI, (1.3)-(1.5) is also technically stable on the given measure over an infinite 
time interval Tz, since in that case for t § +~ 

yj(t, Pi, wj) --~ I + gj~ + t0)I, ( 2 . 1 8 )  
] = i,  2,3. : 

I f  ( 1 . 3 ) - ( 1 . 5 )  i s  t e c h n i c a l l y  s t a b l e  in  T 1 and a l s o  

yj(t,  pj ,  wj) --*- 0 for t -~ +c0 ,  ] = i, 2, 3, ( 2 . 1 9 )  

t hen  i t  i s  t e c h n i c a l l y  a s y m p t o t i c a l l y  s t a b l e  on p ( u ) .  In  p a r t i c u l a r ,  ( 2 . 1 9 )  w i l l  be obeyed  
i f  

exp - -  tl(,uj + t) xp [t/(~j + ~)1 ~ j  (~, pj, wj) d~:-+ 

(2.20) 
--  y~ exp [U(~j + to)], t -~  + ~ ,  ] = 1,2, 3. 

Then ( 2 . 1 5 ) - ( 2 . 2 0 )  t o g e t h e r  w i t h  ( 2 . 5 )  w i l l  r e p r e s e n t  t h e  s u f f i c i e n t  c o n d i t i o n s  f o r  t h e  c o r -  
r e s p o n d i n g  t e c h n i c a l  s t a b i l i t y .  
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We derive the critical inlet speed w~ r for a given pressure in the liquid. As 1 - 

(Ph + Wh 2) ~-~ t -- (Ph +wk2), we solve the system 

>jq-~fl= 1, ] = 1 , 2 , 3 .  (2 .21)  
From (2.21) we get 

'v$ r =  {/3 (s) [3EFlofl (s) I s (s) I 3 (s) 6 - -  PF2o/, (s) (I  s (s) 13 (s) + 

Z=F~o/~ (s) {Z s (s) + 13 (s)l)l }xts {m~o [12 (s) S a (s) + lSF~o/1 (s) (Is(s) +/a(s))] } - v t  

Consequently, those sufficient conditions for technical stability on 0(u) are not met if 

pj + W j ~ l ,  ] = t, 2,3.  (2 .22)  

If with the initial conditions (2.12) and the bounds for yj(t, ~j, ~j) one has 

Vj[uj( t ,  s), t] > y~(t,~p~, ~j) (j = t, 2, 3) (2 .23)  

for one instant t in the finite or infinite time interval, then (1.3)-(1.5) will be techni- 
cally unstable in the finite or infinite time interval. In particular, (2.15) implies that 
one of the conditions for technical instability in that system is 

yj(t, Pi, wj)-+ + ~  q = 1, 2, 3) (2.24) 

for t~ T or t~ TI. For example, if the initial moment in (2.14) is t o = 0, then (2.24) may 
apply for Uj § 0 (j = I, 2, 3) for any t~T or t~ T,. 

The effects for a given pressure in a liquid in stationary flow are similar to those of 
an axial compressive force. 
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APPLICATION OF THE HOLOGRAPHIC INTERFEROMETRY METHOD TO DETERMINE 

THE STRESS INTENSITY FACTOR 

V. P. Tyrin UDC 620.171.5 

Methods are analyzed for the determination of the stress intensity factor K I by means 
of experimentally found displacements in the area of a crack apex. The method of holographic 
interferometry for recording holograms by the scheme of opposing beams is used to measure 
the displacements. In order to raise the hologram quality and the accuracy it is recommended 
to superpose a high-frequency metallized raster on the structure surface. A method is de- 
scribed for finding K I by opening the crack. Examples are presented of investigation of a 
calibration specimen and a ribbed panel with a fatigue crack. 

When studying structures with cracks the stress intensity factor can be found from exper- 
imentally measured displacements in the area of the crack apex [I-3]. Both the displacements 
u, v in the plane of the specimen [i, 2] and the displacements w out of the plane of the 
specimen [3] are used to do this. All three displacement vector components can be determined 
experimentally by using the holographic interferometry method [4]. Two schemes are possible 
for obtaining the initial information, the hologram recording: an extra-axial [4] and opposing 
beam [5] scheme. The second scheme is preferable in investigations of real structures or 
their elements since it permits consolidating the recording medium on the surface of the ob- 
ject being considered, the applied holographic interferometer, which substantially reduces 
demands for vibration-insulation of both the testing equipment and the optical elements. 
Moreover, recording of the displacements of the object as a single whole is eliminated, which 
simplifies processing the interference patterns. 

However, in addition to the advantages, such a hologram recording scheme possesses an 
essential disadvantage, low hologram quality. Holograms can be restored only in the laser 
light beam used for the recording, the interference fringe patterns are interferograms that are 
observed only in beams reflected from the holograms. The former circumstance results in the 
appearance of speckles, which makes recording of the interference fringes difficult in areas 
with high displacement gradients, and the latter results in the displacement w yielding the 
greatest contribution to the interference fringe formation. This displacement vector 
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